ECE 312 Electronic Circuits (A)

Lec. 11: BJT Modeling and re Transistor Model (Hybrid Equivalent Model) (3)
Instructor
Dr. Maher Abdelrasoul
http://www.bu.edu.eg/staff/mahersalem3

Agenda

Complete h-model

Hybrid π Model

Variations of Transistor Parameters

Troubleshooting and Practical Applications

Complete h-model

Current Gain, $\boldsymbol{A}_{\boldsymbol{i}}=\boldsymbol{I}_{\boldsymbol{i}} / \boldsymbol{I}_{\boldsymbol{i}}$

$$
I_{o}=h_{f} I_{b}+I=h_{f} I_{i}+\frac{V_{o}}{1 / h_{o}}=h_{f} I_{i}+h_{o} V_{o}
$$

Substituting $V_{o}=-I_{o} R_{L}$ gives

$$
I_{o}=h_{f} I_{i}-h_{o} R_{L} I_{o}
$$

Rewriting the equation above, we have
and

$$
\begin{gathered}
I_{o}+h_{o} R_{L} I_{o}=h_{f} I_{i} \\
I_{o}\left(1+h_{o} R_{L}\right)=h_{f} I_{i}
\end{gathered}
$$

so that

$$
A_{i}=\frac{I_{o}}{I_{i}}=\frac{h_{f}}{1+h_{o} R_{L}}
$$

Voltage Gain, $\boldsymbol{A}_{\boldsymbol{v}}=\boldsymbol{V}_{\boldsymbol{0}} / \boldsymbol{V}_{\boldsymbol{i}}$

$$
\begin{gathered}
V_{i}=I_{i} h_{i}+h_{r} V_{o} \\
I_{i}=\left(1+h_{o} R_{L}\right) I_{o} / h_{f} \\
\text { and } I_{o}=-V_{o} / R_{L} \\
V_{i}=\frac{-\left(1+h_{o} R_{L}\right) h_{i}}{h_{f} R_{L}} V_{o}+h_{r} V_{o}
\end{gathered}
$$

$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{-h_{f} R_{L}}{h_{i}+\left(h_{i} h_{o}-h_{f} h_{r}\right) R_{L}}
$$

Complete h-model

Input Impedance, $\mathbf{Z}_{\boldsymbol{i}}=\boldsymbol{V}_{\boldsymbol{i}} / \boldsymbol{I}_{\boldsymbol{i}}$

$$
\begin{array}{rlr}
V_{i} & =h_{i} I_{i}+h_{r} V_{o} & A_{i}=\frac{h_{f}}{1+h_{o} R_{L}} \\
V_{o} & =-I_{o} R_{L} & Z_{i}=\frac{V_{i}}{I_{i}}=h_{i}-h_{r} R \\
V_{i} & =h_{i} I_{i}-h_{r} R_{L} I_{o} & \\
A_{i} & =\frac{I_{o}}{I_{i}} & Z_{i}=\frac{V_{i}}{I_{i}}=h_{i}-\frac{h_{f} h}{1+i} \\
I_{o} & =A_{i} I_{i} &
\end{array}
$$

Output Impedance, $\boldsymbol{Z}_{\mathbf{0}}=V_{\mathbf{0}} / \boldsymbol{I}_{\mathbf{0}}$

$$
\begin{gathered}
V_{s}^{-}=0 \\
I_{i}=-\frac{h_{r} V_{o}}{R_{s}+h_{i}} \\
I_{o}=h_{f} I_{i}+h_{o} V_{o} \\
=-\frac{h_{f} h_{r} V_{o}}{R_{s}+h_{i}}+h_{o} V_{o}
\end{gathered}
$$

$$
Z_{o}=\frac{V_{o}}{I_{o}}=\frac{1}{h_{o}-\left[h_{f} h_{r} /\left(h_{i}+R_{s}\right)\right]}
$$

Hybrid π Model

Hybrid π Model (1 of 3)

It includes parameters that do not appear in the other two models primarily to provide a more accurate model for high-frequency effects.

FIG. 5.123
Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

$$
\begin{aligned}
& r_{\pi}=\beta r_{e} \\
& g_{m}=\frac{1}{r_{e}}
\end{aligned}
$$

$$
\frac{r_{\pi}}{r_{\pi}+r_{u}} \cong \frac{r_{\pi}}{r_{u}} \cong h_{r e}
$$

Hybrid π Model (2 of 3)

FIG. 5.123
Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

- The resistance r_{π} (using the symbol π to agree with the hybrid π terminology) is simply βr_{e} as introduced for the common-emitter r_{e} model.
- The output resistance r_{o} is the output resistance normally appearing across an applied load.

Hybrid π Model (3 of 3)

FIG. 5.123
Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

- The resistance r_{u} (the subscript u refers to the union it provides between collector and base terminals) is a very large resistance and provides a feedback path from output to input circuits in the equivalent model.
- All the capacitors are stray parasitic capacitors between the various junctions of the device.
- The controlled source can be a voltage-controlled current source (VCCS) or a current-controlled current source (CCCS), depending on the parameters employed.

$$
\beta I_{b}^{\prime}=\frac{1}{r_{e}} \cdot r_{e} \beta I_{b}^{\prime}=g_{m} I_{b}^{\prime} \beta r_{e}=g_{m}\left(I_{b}^{\prime} r_{\pi}\right)=g_{m} V_{\pi}
$$

Variations of Transistor Parameters

Variations of Transistor Parameters (1 of 3)

- The parameter $h_{f e}(\beta)$ varies the least of all the parameters of a transistor equivalent circuit when plotted against variations in collector current.

Variations of Transistor Parameters (2 of 3)

FIG. 5.125
Hybrid parameter variations with collector-emitter potential.

Variations of Transistor Parameters (3 of 3)

- All the parameters of a hybrid transistor equivalent circuit increase with temperature.

FIG. 5.126

Troubleshooting \& Practical Applications

Troubleshooting

- In general, if a system is not working properly, first disconnect the ac source and check the dc biasing levels.

PRACTICAL APPLICATIONS

- Audio Mixer

FIG. 5.130
Audio mixer.

- Preamplifier

Preamplifier for a dynamic microphone.
Thank Cyou!

